Có: \(A=\frac{19n+7}{7n+11}\)
\(\Leftrightarrow7A=\frac{7\cdot\left(19n+7\right)}{7n+11}=\frac{7\left(19n+209-202\right)}{7n+11}=\frac{19\left(7n+11\right)-202\cdot7}{7n+11}=19-\frac{1414}{7n+11}\)
Mà \(A\in N\Leftrightarrow7A\in N\Leftrightarrow7n+11\inƯ\left(1414\right)=\left\{2;101;7\right\}\)
#)Giải :
Đặt \(A=\frac{19n+7}{7n+11}\)
Để n là số tự nhiên => 19n + 7 chia hết cho 7n + 11
\(\Leftrightarrow7\left(19n+7\right)-19\left(7n+11\right)⋮7n+11\)
\(\Leftrightarrow133n+49-133n-209⋮7n+11\)
\(\Leftrightarrow-160⋮7n+11\)
\(\Leftrightarrow7n+11\in\left\{1;2;4;5;8;10;16;20;32;40;80;160\right\}\)\(\left\{-1;-2;-4;-5;-8;-10;-16;-20;-32;-40;-80;-160\right\}\)
Mà n là số tự nhiên
\(\Rightarrow7n+11\ge11\)
Vậy còn lại các giá trị 16 ; 20 ; 32 ; 40 ; 80 ; 160
Vì các số trên phải chia hết cho 2 => loại các giá trị, còn lại 32
\(\Rightarrow7n+11=32\)
\(\Rightarrow n=3\)
Vậy, khi n = 3 thì A = 2 ( thỏa mãn )
Để \(\frac{19n+7}{7n+11}\)là số tự nhiên => ( 19n+7 ) \(⋮\)( 7n + 11) => 7( 19n + 7 ) \(⋮\)( 7n + 1)
Xét 7( 19n + 7) = 7 . 19n + 7 . 7 = 19 . 7n + 19 . 11 - 19 . 11 + 7 . 7 = 19( 7n + 11) - 160
=> 19( 7n + 11) - 160 \(⋮\)7n + 1
Mà 19 ( 7n + 11) \(⋮\)7n + 1 => 160 \(⋮\)7n + 11
=> 7n + 11 \(\in\)Ư(160)
Vì n \(\in\)N nên 7n + 11 \(\ge\)18
Ư(160) = { ...10 ; 16 ; 20 ; 32; ...; 160} => 7n + 11 = 20 ; 32 ; 40 ; 80 ; 160
Ta có bảng sau :
7n + 11 | 20 | 32 | 80 | 40 | 160 |
n | \(\frac{9}{7}\) | 3 | \(\frac{69}{7}\) | \(\frac{29}{7}\) | \(\frac{149}{7}\) |
loại | chọn | loại | loại | loại |
Vậy ...