Tìm số tự nhiên n nhỏ nhất sao cho n chia 8 thì dư 4 , chia 9 thì dư 8.
Giải:Theo bài ra ta có:
n chia cho 8 dư 4 nên ta đặt n=8k+4 \(\Rightarrow n+28=8k+4=28=8k+32\) chia hết cho 8 (1)
n chia cho 9 dư 8 nên ta đặt n=9m+8\(\Rightarrow n+28=9m+8+28=9m+36\) chia hết cho 9 (2)
Từ (1) và (2) suy ra:\(n+28\) vừa chia hết cho 8 vừa chia hết cho 9
\(\Rightarrow n+28\in BC\left(8,9\right)\) mà n nhỏ nhất nên n+28 nhỏ nhất nên \(n+28=BCNN\left(8,9\right)=72\)
\(\Rightarrow n=72-28=44\)
Vậy số cần tìm là :44
Theo đầu bài, ta có : n - 4 \(\in\)B ( 8 ) ; n - 8 \(\in\)B ( 9 )
B ( 8 ) = { 0 ; 8 ; 16 ; 24 ; 32 ; 40 ; 48 .....}
\(\Rightarrow\)n \(\in\){ 4 ; 12 ; 20 ; 28 ; 36 ; 44 ; ........ } (1)
B ( 9 ) = { 0 ; 9 ; 18 ; 27 ; 36 ; 45 ; 54 ; 63 ; .....}
\(\Rightarrow\)n \(\in\){ 8 ; 17 ; 26 ; 35 ; 44 ; 53 ; 62 ; .......} (2)
Từ (1) và (2) \(\Rightarrow\)n = 44