Tìm số tự nhiên n nhỏ nhất để tồn tại dãy số nguyên a1,a2,a3,a4,a5,a6,a7,...,a thỏa mãn a1+a2+a3+...+an=2017=a1*a2*a3*...*an
cho a1/a2=a2/a3=a3/a4=...=an/an+1 thì (a1+a2+a3+...+an/a2+a3+a4+...+an+1)^n=a1/an+1
hộ mk giúp nha nhanh lên mk cần gấp lắm
cho a1 a2 a3 .. an lẻ, n>2015 thỏa mãn a1^2+a2^2+...+a2013^2=a2014^2 +...+an^2
tìm n nhỏ nhất
Cho 5 số nguyên phân biệt a1 , a2 , a3 , a4 , a5 . Xét tích số sau :A=(a1-a2)(a1-a3)(a1-a4)(a1-a5)(a2-a3)(a2-a4)(a2-a5)(a3-a4)(a3-a5)(a4-a5).CMR A luôn chia hết cho 288
1.gọi a1,a2,a3,...a2014 là các số tự nhiên thỏa mãn:
\(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+.....+\frac{1}{a2014}=1\)
cmr : tồn tại ít nhất 1 số ak là số chẵn (k thuộc N,1<=k<2014)
Cho các số nguyên a1;a2;a3;a3...;a2015 thỏa mãn a1 + a2 +a3 +... + a2015 = 0 và a1 + a2 = a3 + a4 = a2015 + a1 =1
tinh a1 ; a2015
Chứng minh rằng nếu a1/a2=a2/a3=a3/a4=...=an/an+1 thì (a1+a2+a3+...+an/a2+a3+a4+...+an+1)^n=a1/an+1
cho các số nguyên a1 ; a2 ; a3 ; .... ; a2015 thỏa mãn a1 + a2 + a3 +...+ a 2015 = 0 và a1 + a2 = a3 + a4 = a2015 + a1 =1
tính a1 ; a2015
CMR nếu \(\dfrac{a1}{a2}=\dfrac{a2}{a3}=\dfrac{a3}{a4}=...=\dfrac{an}{an+1}\) thì:
\(\left(\dfrac{a1+a2+a3+...+an}{a2+a3+a4+...+an+1}\right)^n=\dfrac{a1}{an+1}\)
gọi a1,a2,a3,...,a2014 là các số tự nhiên thỏa mãn:
\(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+....+\frac{1}{a2014}\)=1
cmr tồn tại ít nhất 1 số ak là số chẵn : (1<=k<2014)