TA

Tìm số tự nhiên n để:

A = n3 4n+ 6n 4 là số nguyên tố.

VA
18 tháng 9 2018 lúc 20:33

thảm khảo 1 bài tương tuwjj nhé

tìm n để biểu thức sau là số nguyên tố .( câu hỏi của bạn TTH )

n3-4n2+n-1

n3−4n2+4n−1=(n3−1)−4n(n−1)=(n−1)(n2−3n+1)n3−4n2+4n−1=(n3−1)−4n(n−1)=(n−1)(n2−3n+1)

Để biểu thức là số nguyên tố thì nó chỉ chia hết cho 1 và chính nó 

Tức là chỉ chia hết cho n-1 hoặc (n2−3n+1)(n2−3n+1) hoặc(n−1)(n2−3n+1)(n−1)(n2−3n+1)

Suy ra: n - 1 = 1 hoặc n2−3n+1=1n2−3n+1=1
=> n=2 hoặc n=0 hoặc n = 3

Trong 3 kết quả ta chỉ nhận n =3. Khi đó biểu thức có giá trị là 2 (số nguyên tố)

Đáp số n = 3

Bình luận (0)
CH
23 tháng 9 2018 lúc 22:20

A=n3-4n2+6n-4

A=n3-2n2-2n2-2n+8n-4

A=n2(n-2)-2n(n-2)+2(n-2)

A=(n-2)(n2-2n+1+1)

A=(n-2)[(n-1)2+1]

Có A là số nguyên tố

=>n-2=1

hoặc (n-1)2+1=1

TH1 n-2=1 => n=3

TH2 (n-1)2+1=1 =>n-1=0 => n=1

Thử lại:

n=3 =>A=5 (chọn)

n=1 =>A=3 (chọn)

Bình luận (0)