Ta có:
\(3n+2⋮n-1\)
\(\Rightarrow3n-3+3+2⋮n-1\)
\(\Rightarrow\left(3n-3\right)+5⋮n-1\)
\(\Rightarrow3.\left(n-1\right)+5⋮n-1\)
\(\Rightarrow5⋮n-1\)( vì \(3.\left(n-1\right)⋮n-1\))
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow n\in\left\{2;6\right\}\)
Vậy: \(n\in\left\{2;6\right\}\)
3n + 2 \(⋮\) n - 1 <=> 3(n - 1) + 5 \(⋮\) n - 1
=> 5 \(⋮\) n - 1 (vì 3(n - 1) \(⋮\) n - 1)
=> n - 1 ∈ Ư(5) = {1; 5}
n - 1 = 1 => n = 2
n - 1 = 5 => n = 6
Vậy n ∈ {2; 6}
3n+2 n-1
=> 3(n-1)+5 n-1
mà 3(n-1) n-1 => 5 n-1
hay n-1 Ư(5)={1;5}
Ta có bảng sau
n-1 | 1 | 5 |
n | 2 | 6 |
Vậy n {2;6}
3n+2 n-1
=> 3(n-1)+5 n-1
mà 3(n-1) n-1 => 5 n-1
hay n-1 Ư(5)={1;5}
Ta có bảng sau
n-1 | 1 | 5 |
n | 2 | 6 |
Vậy n {2;6}