Lời giải:
$2^n+3^n=5^n$
$\Rightarrow (\frac{2}{5})^n+(\frac{3}{5})^n=1$
Nếu $n> 1$ thì:
$(\frac{2}{5})^n< \frac{2}{5}$
$(\frac{3}{5})^n< \frac{3}{5}$
$\Rightarrow (\frac{2}{5})^n+(\frac{3}{5})^n< \frac{2}{5}+\frac{3}{5}=1$ (loại)
Do đó $n\leq 1$
Mà $n$ là số tự nhiên nên $n=0$ hoặc $n=1$
Thử 2 giá trị $0,1$ thấy $n=1$ thỏa mãn.