H24

Tìm số tự nhiên a,b sao cho :

\(\left(2016a+3b-1\right).\left(2016^a+2016a+b\right)=2015\)

AZ
4 tháng 2 2020 lúc 17:39

Đề hình như sai rồi bạn ạ! Tui nghĩ vậy nè:

\(\left(2016a+13b-1\right).\left(2016^a+2016a+b\right)=2015\)

Ta có: \(2015\)là số lẻ nên: \(\left(2016a+13b-1\right)\left(2016^a+2016a+b\right)\) lẻ.

\(\Rightarrow\hept{\begin{cases}2016a+13b-1\\2016^a+2016a+b\end{cases}}lẻ\)

Nếu: \(a\ne\Rightarrow2016a\)chẵn \(\Rightarrow13b-1\)lẻ \(\Rightarrow13b\)chẵn.

Mà: \(13\)lẻ nên \(\Rightarrow b\) chẵn.

Lúc đó: \(2016^a+2016a+b\left(l\right)\)

\(\Rightarrow a\ne0\left(ktm\right)\)

Nếu: \(a=0\Rightarrow2016a+13b-1=13b-1\)l lẻ.

\(2016^a+2016a+b=b+1\)lẻ

\(\Rightarrow\left(13b-1\right)\left(b+1\right)=2015\)

Mà: \(b\in N\Rightarrow\left(13b-1\right),\left(b+1\right)\inƯ\left(2015\right)\)

Vì:\(13b-1\) không chia hết cho \(3\)và \(13b-1>b+1\)

\(\Rightarrow\hept{\begin{cases}13b-1=155\\b+1=13\end{cases}}\Rightarrow\hept{\begin{cases}b=12\\b=12\end{cases}}\Rightarrow b=12\left(tm\right)\)

Vậy \(\hept{\begin{cases}a=0\\b=12\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HE
Xem chi tiết
TL
Xem chi tiết
CT
Xem chi tiết
NH
Xem chi tiết
DM
Xem chi tiết
HI
Xem chi tiết
H24
Xem chi tiết
DM
Xem chi tiết
NA
Xem chi tiết