Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm số thực x để 3 số:\(x-\sqrt{3};x^2+2\sqrt{3};x-\frac{2}{x}\)là số nguyên
Tìm số thực x để 3 số : \(x-\sqrt{3};x^2+2\sqrt{3};x-\frac{2}{x}\)là số nguyên
Tìm số thực x để \(x-\sqrt{3};x^2+2\sqrt{3};x-\frac{2}{x}\) là số nguyên
Tìm các số thực x để \(x-\sqrt{3};x^2+2\sqrt{3};x+\frac{2}{x}\)
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = $\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}$
Bài 2: Tìm các số thực x$\geq 0$ sao cho E = $\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}$ nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn $\left\{\begin{matrix} \sqrt{x}+\sqrt{y-2}=2\\ \sqrt{y+1}+\sqrt{z-3}=3\\ \sqrt{z+5}+\sqrt{x+3}=5 \end{matrix}\right.$
Bài 4: CMR $2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3$
Bài 5: CMR $\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2$
Tìm số thực x để \(x-\sqrt{3};x^2+2\sqrt{3};x-\frac{2}{x}\) là số nguyên
Tìm số thực x không âm để C=\(\frac{9+2\sqrt{x}}{2+3\sqrt{x}}\)có giá trị nguyên
Tìm số thực x không âm để \(C=\frac{9+2\sqrt{x}}{2+3\sqrt{x}}\) có giá trị nguyên
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = \(\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}\)
Bài 2: Tìm các số thực \(x\geq 0\) sao cho E = \(\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}\) nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn \(\sqrt{x}+\sqrt{y-2}=2\) và \(\sqrt{y+1}+\sqrt{z-3}=3\) và \(\sqrt{z+5}+\sqrt{x+3}=5\)
Bài 4: CMR \(2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3\)
Bài 5: CMR \(\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2 \)