Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

H24

Tìm số tận cùng của tổng sau:

A=1+3^2+3^3+...+3^2018+3^2020

XO
7 tháng 1 2019 lúc 16:03

Đặt B =   32 + 33 + 34 +...+ 32018

    3B = 33 +34 + 35 + ... + 32018 +32019

 Lấy 3B - B = (33 +34 + 35 + ... + 32018 +32019) - (32 + 33 + 34 +...+ 32018)

               B = 32019 - 32

Ta có A = 1 + B + 32020

             = 1 +32019 - 32 + 32020

             = 1 +32019 - 9 + 32020 

             = 32019 - 8 + 32020

   Ta có 34n = ....1

=> 32020 = 34.505 = ...1

=>  32019 - 8 + 32020 =  32019 - 8 + ...1

                                  = 32019 - 7

Ta có 32019 = 32016 . 33

Ta có 32016 = 34.504 = ...1

=> 32019 = ...1 . 33

              = ...1 . ...7

              = ...7

=> 32019 - 7 = ...7 - 7

                    = ...0

=> 32 + 33 + 34 +...+ 32018 tận cùng là 0

                       

              

Bình luận (0)

Các câu hỏi tương tự
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
Xem chi tiết
NN
Xem chi tiết
CA
Xem chi tiết
NA
Xem chi tiết
PY
Xem chi tiết
H24
Xem chi tiết