\(\dfrac{x}{3}-\dfrac{4}{y}=\dfrac{7}{6}\left(y\ne0\right)\)
\(\Rightarrow\dfrac{6xy}{18y}-\dfrac{72}{18y}=\dfrac{21y}{18y}\)
\(\Rightarrow6xy-72=21y\)
\(\Rightarrow6xy-21y=72\Rightarrow3y\left(2x-7\right)=72\Rightarrow y\left(2x-7\right)=24\)
\(\Rightarrow\left(2x-7\right)\&y\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-8;8;-12;12;-24;24\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(3;-24\right);\left(4;24\right);\left(\dfrac{5}{2};-12\right);\left(2;-8\right);\left(5;8\right);\left(\dfrac{3}{2};-6\right);\left(\dfrac{11}{2};6\right);\left(\dfrac{1}{2};-4\right);\left(\dfrac{13}{2};4\right);\left(-\dfrac{1}{2};-4\right);\left(\dfrac{15}{2};3\right)\right\}\)
.... đến đây bạn tự tìm ra x;yϵZ