Ta có 5x + 7 = 5( x + 1 ) + 2
Để 5x + 7 chia hết cho x + 1
=> 5( x + 1 ) + 2 chia hết cho x + 1
=>2 chia hết cho x + 1
=> x + 1 c Ư(2) = { 1 ; 2 ; -1 ; -2 }
=> x c { 0 ; 1 ; -2 ; -3 }
Vậy...
\(\frac{5x+7}{x+1}=\frac{5\left(x+1\right)+2}{x+1}=5+\frac{2}{x+1}\)
Để 5x+7\(⋮\)x+1 thì x+1\(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Xét bảng ( tự xét )
KL
\(5x+7⋮x+1\)
\(5\left(x+1\right)+6⋮x+1\)
Vì \(5\left(x+1\right)⋮x+1\)
\(6⋮x+1\)
\(\Rightarrow x+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta lập bảng
x+1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
\(\left(5x+7\right)⋮x+1\)
\(=>5.\left(x+1\right)+2⋮x+1\)
Do \(5.\left(x+1\right)⋮x+1\)
\(=>2⋮x+1\)
\(=>x+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(=>x\in\left\{-3;-2;0;1\right\}\)
Vậy ...