a) \(5^{x+2}-5^{x-1}=3100\) \(\Leftrightarrow5^x.5^2-5^x:5=3100\)
\(\Leftrightarrow5^x.25-5^x.\frac{1}{5}=3100\)\(\Leftrightarrow5^x.\left(25-\frac{1}{5}\right)=3100\)
\(\Leftrightarrow5^x.\frac{124}{5}=3100\)\(\Leftrightarrow5^x=125=5^3\)\(\Leftrightarrow x=3\)
Vậy \(x=3\)
b) \(\left(x-4\right)\left(2x+3\right)< 0\)
TH1: \(\hept{\begin{cases}x-4>0\\2x+3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\2x< -3\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< \frac{-3}{2}\end{cases}}\)( vô lý )
TH2: \(\hept{\begin{cases}x-4< 0\\2x+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 4\\2x>-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 4\\x>\frac{-3}{2}\end{cases}}\Leftrightarrow\frac{-3}{2}< x< 4\)
mà x là số nguyên \(\Rightarrow-1< x< 4\)
Vậy \(-1< x< 4\)