Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1, Tìm số nguyên tố p,q để p-q và p+q là các số nguyên tố
2, Cho xy(x+y)+2 chia hết 3 .CM xy(x+y)-7 chia hết 9
Tìm 2 số nguyên tố p, q sao cho (5p - 2p)(5q - 2q) chia hết cho p.q
a,cho 2^m -1 là số nguyên tố . Chứng minh m là số nguyên tố
b,tìm 3 số nguyên tố p,q,r sao cho p+r=2q và hiệu p-q là số tự nhiên không chia hết cho 6.
c, tìm m,n là các số tự nhiên để A là số nguyên tố
A=\(3^{3m^2+6n-61}+4\)
Với p là số nguyên tố, đặt \(n=\frac{2^{2p}-1}{3}\). Tìm tất cả các số nguyên tố \(p\)sao cho \(2^n-2\)ko chia hết cho \(n\)
1) Cho các số nguyên \(x,y\)thỏa mãn \(x^3+y^3=2016\). Chứng minh rằng: \(\left(x+y\right)^3+3xy\left(x+y\right)\)chia hết cho 18.
2) Tìm tất cả các số nguyên tố \(p\)sao cho\(p^2+14\)là số nguyên tố.
3) Tìm giá trị nhỏ nhất của biểu thức \(P=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
Cho p và q là các số nguyên tố lớn hơn 3. Chứng minh p^2-q^2 chia hết cho 24
Cho p và q là các số nguyên tố lớn hơn 3 , chứng tỏ p2 - q2 chia hết cho 3
1 Tìm tất cả các số nguyên tố p và q sao cho tồn tại STN m thỏa mãn: p.q / p+q =m2+1/m+1
2 Cho các số nguyên dương x;y;z thỏa mãn X2 +Y2=Z2
a/CM: X*Y chia hết cho 12
b/CM: X3Y-XY3 chia hết cho7
3 CMR với k là số ngyên thì 2016k+3 ko là lập phương 1 số nguyên
Cho p là số nguyên tố lớn hơn 2
CMR: có vô số n thuộc N sao cho \(n.2^n-1\)
chia hết cho p