Sai thì sửa,chửa thì đẻ
Do p+4 và p+8 là nguyên tố > 3 nên p+4 và p+8 đều lẻ
=> p lẻ
Với p = 3 thì p + 8 = 3 + 8 = 11; p + 4 = 3 + 4 = 7, đều là số nguyên tố (Chọn)
Với p > 3, do p nguyên tố nên p = 3.k + 1 hoặc p = 3.k + 2 (k ∈ N*)
+ Nếu p = 3.k + 1 thì p + 8 = 3.k + 1 + 8 = 3.k + 9 chia hết cho 3, là hợp số (Loại)
+ Nếu p = 3.k + 2 thì p + 4 = 3.k + 2 + 4 = 3.k + 6 chia hết cho 3, là hợp số, (Loại)
Vậy p = 3
Với p = 2
=> p + 4 = 6
=> p = 1 loại
Với p = 3
=> p + 4 = 7
=> p + 8 = 11
=> p = 3 (tm)
Với p > 3
=> p = 3k + 1 hoặc p = 3k + 2 (k \(\inℕ^∗\))
Với p = 3k + 1
=> p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) \(⋮\)3
=> p = 3k + 1 loại
Với p = 3k + 2
=> p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) \(⋮\)3
=> p = 3k + 2 loại
Vậy p = 3 là giá trị cần tìm
Với p = 2 => p + 4 = 6
Vì 6 là số nguyên tố nên p = 2 (loại) (1)
Với p = 3 => p + 4 = 7và p + 8 = 11
Vì 7 và 8 là các số nguyên tố nên p = 3 (thỏa mãn) (2)
Với p là số nguyên tố lớn hơn hoặc bằng 3
=> p có dạng 3k + 1 ; 3k + 2 (k thuộc N*)
+) p = 3k + 1 => p + 8 = 3k + 1 + 8 = 3k + 9 = 3 (k + 3) chia hết cho 3
=> p + 8 là hợp số
=> p = 3k + 1 (loại) (3)
+) p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 = 3 (k + 2) chia hết cho 3
=> p + 4 là hợp số
=> p = 3k + 2 (loại) (4)
Từ (1), (2), (3) và (4) => p = 3
Vậy p = 3.