Với \(p=2\): \(p^3+2=10\)là hợp số (loại).
Với \(p=3\): \(2p-1=5,p^3+2=29\)đều là số nguyên tố (thỏa mãn)
Với \(p>3\): khi đó \(p\)có dạng \(3k+1\)hoặc \(3k+2\).
Với \(p=3k+1\): \(p^3+2=\left(3k+1\right)^3+2\equiv1+2\left(mod3\right)\equiv0\left(mod3\right)\)
do đó \(p^3+2\)chia hết cho \(3\)mà \(p^3+2>3\)nên không là số nguyên tố.
Với \(p=3k+2\): \(2p-1=2\left(3k+2\right)-1=6k+3⋮3\)
mà \(2p-1>3\)nên không là số nguyên tố.
Vậy \(p=3\).