a) p, p+2, p+4 nguyên tố?
*nếu p = 3 => p+2 = 5, p+4 = 7 là 3 số nguyên tố
*p # 3:
nếu p chia 3 dư 1 => p+2 chia hết cho 3 : ko là số nguyên tố
nếu p chia 3 dư 2 => p+4 chia hết cho 3 : ko là số nguyên tố
Vậy chỉ có số nguyên tố p duy nhất thỏa là p = 3
b) p+2; p+6;p+8;p+14 nguyên tố
đặt: p = 5k+r (0 ≤ r < 5)
* nếu r = 1 => p+14 = 5k+15 chia hết cho 5
* nếu r = 2 => p+8 = 5k + 10 chia hết cho 5
* nếu r = 3 => p+2 = 5k+5 chia hết cho 5
* nếu r = 4 => p+6 = 5k+10 chia hết cho 5
* nếu r = 0 => p = 5k là nguyên tố khi k = 1
p = 5, các số kia là: 7,11,13,19 là các số nguyên tố: thỏa
Vậy p = 5
c) p+6, p+8, p+12, p+14 nguyên tố
p = 5k+r
xét như trên thấy r không thể là 1, 2, 3,4
r = 0 => p = 5k nguyên tố => p = 5
các số là 5, 11,13,17,19 nguyên tố
Vậy p = 5
chuc ban hoc tot -_-