\(\frac{n+1}{n-2}\)có giá trị nguyên
=> n+1\(⋮\)n-2=> n-2+3\(⋮\)n-2
=> 3\(⋮\)n-2=> n-2\(\in\){1,3,-1,-3}=>n\(\in\){3,5,1,-1}
ta có n+1=n-2+3
vì n-2 chia hết n-2 suy ra để n-2+3 chia hết n-2 thì 3 chia hết n-2
suy ra n-2 thuộc Ư(3) = {1;-1;3;-3}
ta có bảng
n-2 1 3 -1 -3
n 3 5 1 -1
C/L C C C C
Ta có : \(\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Để phân số đó có giá trị là 1 số nguyên thì \(n-2\inƯ(3)=\left\{\pm1;\pm3\right\}\)
n - 2 | 1 | -1 | 3 | -3 |
n | 3 | 1 | 5 | -1 |
Gọi d là ƯCLN\((12n+1,30n+2)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow(60n+5)-(60n+4)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : ...
gọi d là ƯCLN (12n+1;30n+2)
suy ra 12n+1 chia hết d và 30n +2 chia hết d
suy ra 60n+5 chia hết d và 60n+4 chia hết d
suy ra (60n+5)-(60n+4) chia hết d
suy ra 1 chia hết d
suy ra d=1
suy ra 12n+1 và 30n+2 nguyên tố cùng nhau
suy ra với mọi n thì 12n+1/30n+2 là phân số tối giản