3n - 4 ⋮ 2 - n <=> 3n - 4 ⋮ n - 2
<=> 3n - 6 + 2 ⋮ n - 2
<=> 3(n - 2) + 2 ⋮ n - 2
Vì 3(n - 2) ⋮ n - 2 . Để 3(n - 2) + 2 ⋮ n - 2 <=> 2 ⋮ n - 2
=> n - 2 thuộc ước của 2 là - 2; - 1; 1; 2
=> n - 2 = { - 2; - 1; 1; 2 }
=> n = { 0 ; 1 ; 3 ; 4 }
Vậy n = { 0 ; 1 ; 3 ; 4 }
Tìm số nguyên n để 3n-4 chia hết cho n+4