Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NA

Tìm số nguyên dương xy sao cho

X^3+y^3=3xy-1

H24
6 tháng 3 2018 lúc 15:10

PT tương đương:

\(x^3+y^3+1-3xy=0\)

\(\Leftrightarrow\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)=0\)

Mà: \(x,y\inℤ\)

Nên: \(x^3+y^3+1-3xy=0\)

\(\Leftrightarrow2x^2+2y^2+2-2xy-2x-2y=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow x=y=1\)

Vậy: x = y = 1.

Bình luận (0)
H24
6 tháng 3 2018 lúc 15:08

Ta có x3+y3=3xy-1

=> (x+y)3-3xy(x+y)-3xy+1=0

=>[(x+y)3+1]-3xy(x+y+1)=0

=>(x+y+1)[(x+y)2-x-y+1)]-3xy(x+y+1)=0

=>(x+y+1)(x2-xy+y2-x-y+1)=0

Vì x,y là các số nguyên dương nên x+y>0

=>x+y+1>1

=>x+y+1 khác 0

=>x2-xy+y2-x-y+1=0

=>2x2-2xy+2y2-2x-2y+2=0

=>(x-y)2+x2-2x+1+y2-2y+1=0

=>(x-y)2+(x-1)2+(y-1)2=0

=>(x-y)2 bé hơn hoặc bằng 0

    (y-1)2 bé hơn hoặc bằng 0

    (x-1)2 bé hơn hoặc bằng 0

Mà (x-y)lớn hơn hoặc bằng 0

      (x-1)2 lớn hơn hoặc bằng 0

      (y-1)2  lớn hơn hoặc bằng 0

=>(x-y)2=0

    (y-1)2=0

    (x-1)2=0

=>x=y=1

Bình luận (0)
H24
6 tháng 3 2018 lúc 15:11

\(x^3+y^3+1\ge3xy\)

Dấu "=" xảy ra khi x = y = 1. 

Bình luận (0)
H24
6 tháng 3 2018 lúc 19:30

\(x^3+y^3=3xy-1\)

P/s Áp dụng bất đẳng thức Cosi ta có:

\(x^3+y^3+1\ge3xy\)

Nên đẳng thức sảy ra \(\Leftrightarrow x=y=1\)

Còn nếu không dùng được bất đẳng thức cosi thì làm giống mấy bạn trên :P

Bình luận (0)

Các câu hỏi tương tự
DA
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
YY
Xem chi tiết
PT
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
Xem chi tiết
HA
Xem chi tiết