Ta có:
1/n + 3 = 1 / 1 + (n + 2)
2/n + 4 = 2 / 2 + (n + 2)
3/n + 5 = 3 / 3 + (n + 2)
....
2001/n + 2003 = 2001 / 2001 + (n + 2)
2002/n + 2004 = 2002 / 2002 + (n + 2)
Ta thấy các phân số trên đều có dạng a/a + (n + 2)
Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau
=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau
Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003
=> n = 2003 - 2 = 2001
Vậy n = 2001
nhớ k nha
Ta có:
1/n + 3 = 1 / 1 + (n + 2)
2/n + 4 = 2 / 2 + (n + 2)
3/n + 5 = 3 / 3 + (n + 2)
....
2001/n + 2003 = 2001 / 2001 + (n + 2)
2002/n + 2004 = 2002 / 2002 + (n + 2)
Ta thấy các phân số trên đều có dạng a/a + (n + 2)
Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau
=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau
Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003
=> n = 2003 - 2 = 2001
Vậy n = 2001
Ta có:
1/n + 3 = 1 / 1 + (n + 2)
2/n + 4 = 2 / 2 + (n + 2)
3/n + 5 = 3 / 3 + (n + 2)
....
2001/n + 2003 = 2001 / 2001 + (n + 2)
2002/n + 2004 = 2002 / 2002 + (n + 2)
Ta thấy các phân số trên đều có dạng a/a + (n + 2)
Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau
=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau
Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003
=> n = 2003 - 2 = 2001
Vậy n = 2001
Ko copy bài ng` khác ko yên hả
ta có: 1/n + 3=1/1 + (n+ 2)
2/n + 4= 2/2 + (n+2)
3/n+ 5 = 3/3+ ( n+2)
mà ta lại có 2001/n + 2003= 2001/2001+ ( n+2)
2002/n + 2004= 2002/2002+( n+2)
từ đó suy ra mỗi p/s trên đều có dạng a/a+ ( n+2)
muốn mỗi p/s tối giản thì a và a+ 2 phải là ng tố cg nhau
=> n+2 và 1,2,3,...,2001,2002 ng tố cg nhau
mà n nhỏ nhất=> n+2 phải nhỏ nhất
Vậy n+2=2003=> n=2001