Tìm số tự nhiên n nhỏ nhất để tồn tại dãy số nguyên a1,a2,a3,a4,a5,a6,a7,...,a thỏa mãn a1+a2+a3+...+an=2017=a1*a2*a3*...*an
cho day so a1,a2,a3,.....Biet a2=3,a2012=2013,an=an+an+1.tinh
S=a1+a2+a3+.......+a2010
Cho a1 / a2 = a2/a3 = a3/a4 = .......=an/a1 và a1+a2+a3+..+an khác 0
Tính: a1^2 + a2^2 + a3^2 + ..........+an^2 / (a1+a2+a3+..+an)^2
cho a1/a2=a2/a3=a3/a4=...=an/an+1 thì (a1+a2+a3+...+an/a2+a3+a4+...+an+1)^n=a1/an+1
hộ mk giúp nha nhanh lên mk cần gấp lắm
Cho 51 số nguyên dương bất kì . Cmr : luôn chọn được 4 số a1 , a2 , a3, a4 trong 50 số đó để ( a2-a1 )*(a4-a3) chia hết cho 2352
Chứng minh rằng nếu a1/a2=a2/a3=a3/a4=...=an/an+1 thì (a1+a2+a3+...+an/a2+a3+a4+...+an+1)^n=a1/an+1
Cho a1/a2=a2/a3=a3/a4=an-1/an=an/a1 ( a1+a2+...+an#0 )
Tính
1) A=a1^2+a2^2+...+an^2/(a1+a2+...+an)^2
2) B=a1^9+a2^9+...+an^9/(a1+a2+...+an)^9
CMR nếu \(\dfrac{a1}{a2}=\dfrac{a2}{a3}=\dfrac{a3}{a4}=...=\dfrac{an}{an+1}\) thì:
\(\left(\dfrac{a1+a2+a3+...+an}{a2+a3+a4+...+an+1}\right)^n=\dfrac{a1}{an+1}\)
cho a1 a2 a3 .. an lẻ, n>2015 thỏa mãn a1^2+a2^2+...+a2013^2=a2014^2 +...+an^2
tìm n nhỏ nhất
Tim STN n lon nhat sao cho so 2015 bang tong cua n so a1,a2,a3,...,an trong do tat ca cac so a1,a2,a3,...,an deu la hop so