\(n^4+4=\left(n^2\right)^2+4n^2+4-\left(2n\right)^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2+2n+2\right)\left(n^2-2n+2\right)\)
Vì n^4+4 là SNT mà n^2+2n+2>n^2-2n+2 nên
\(\Rightarrow n^2-2n+2=1\Rightarrow n^2-2n+1=0\Rightarrow\left(n-1\right)^2=0\Rightarrow n-1=0\Rightarrow n=1\)
Thử lại:1^4+4=5 là SNT
Vậy n=5
à nhầm,n=1 nha
Ta có :
\(n^4+4=\left(n^2\right)^2+4.n^2+4-4.n^2=\left(n^2+2\right)^2-\left(2n^2\right)\)
\(=\left(n^2+2-2n\right).\left(n^2+2+2n\right)=\left[\left(n-1\right)^2+1\right].\left[\left(n+1\right)^2+1\right]\)
Vì n là số tự nhiên nên có các trường hợp :
+ Nếu n = 0 thì \(n^4+4=\left[\left(0-1\right)^2+1\right].\left[\left(0+1\right)^2+1\right]=2.2=2^2\)là hợp số ( loại )
+ Nếu n = 1 thì \(n^4+4=\left[\left(1-1\right)^2+1\right].\left[\left(1+1\right)^2+1\right]=1.5=6\)là số nguyên tố
+ Nếu n > 1 thì \(n^4+4\) là tích của hai số lớn hơn 1 là \(\left[\left(n-1\right)^2+1\right]\)và \(\left[\left(n+1\right)^2+1\right]\). Tích của hai số lớn hơn 1 là hợp số . ( loại )
Vậy để \(n^4+4\)là số nguyên tố thì n = 1 .
Học tốt
số nguyên dương n=1