Cái này bạn phải chứng minh bổ đề phụ nhá
\(n=1\)ta thấy thõa mãn
Nếu \(n\ge2\)thì \(n^{1998}+n^{1987}+1>n^2+n+1\)
Măt khác : \(n^{1988}+n^{1987}+1=n^2\left(n^{1986}-1\right)+n\left(n^{1986}-1\right)+\left(n^2+n+1\right)\)
Nên \(n^2+n+1\)| \(n^{1988}+n^{1987}+1\)
Vậy \(n^{1988}+n^{1987}+1\) là hợp số
Mik có sửa lại cái đề mới nãy của bạn ( bạn xem lại đề bài bạn cho có đúng không nhé )