HM

tìm số nguyên a thỏa mãn đẳng thức a(m+p)= 5(m+n) và \(\frac{25}{21}.\left(p-n\right)\left(2m+n+p\right)=\left(m+p\right)^2\)với m,n,p là những số dương và n#p

TL
19 tháng 3 2015 lúc 14:22

a(m+p) = 5(m+n) => \(\frac{m+n}{m+p}=\frac{a}{5}\)

từ đẳng thức thứ 2 => 25.(p - n)(2m+n+p) = 21(m+p)2   ==> 25.(m+ p- m - n)(m+n+ m + p) = 21(m+p)2 

Chia cả 2 vế chp (m+p) ta được

\(25.\left(\frac{m+p}{m+p}-\frac{m+n}{m+p}\right)\left(\frac{m+n}{m+p}+\frac{m+p}{m+p}\right)=21\)

thay (*) vào ta đc

\(\Rightarrow25.\left(1-\frac{a}{5}\right)\left(\frac{a}{5}+1\right)=21\)\(\Rightarrow25.\left(1-\left(\frac{a}{5}\right)^2\right)=21\)

\(\Rightarrow25.\left(\frac{25-a^2}{25}\right)=21\Rightarrow25-a^2=21\Leftrightarrow a^2=4\Rightarrow a=2;-2\)

vậy ....

 

 

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
NT
Xem chi tiết
NV
Xem chi tiết
P2
Xem chi tiết
NA
Xem chi tiết
HP
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
NH
Xem chi tiết