3a+11=\(3a+6+5=3\left(a+1\right)+5\)
Để 3a+11 \(⋮\left(a+2\right)\Leftrightarrow3\left(a+2\right)+5⋮\left(a+2\right)\Leftrightarrow5⋮\left(a+2\right)\Rightarrow a+2\in\left\{-5;-1;1;5\right\}\Rightarrow a\in\left\{-7;-3;-1;3\right\}\)
Ta có: \(3a+11⋮a+2\)
<=> \(3\left(a+2\right)+5⋮a+2\)
<=> \(5⋮a+2\)
Vì a nguyên => \(a+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
a+2 | 1 | -1 | 5 | -5 |
a | -1 | -3 | 3 | -7 |
Vậy \(a\in\left\{-1;-3;3;-7\right\}\)