Tìm số nghiệm nguyên của bất phương trình log 5 2 ( 3 x - 2 ) log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Số nghiệm nguyên của bất phương trình log 2 ( x - 1 ) ≤ 2 là:
A. 4.
B. 3.
C. 5.
D. Vô số.
Tìm tất cả các giá trị thực của tham số m sao cho mọi nghiệm của bất phương trình: x 2 - 3 x + 2 ≤ 0 cũng là nghiệm của bất phương trình m x 2 + ( m + 1 ) x + m + 1 ≥ 0 ?
A. m ≤ - 1 .
B. m ≤ - 4 7 .
C. m ≥ - 4 7 .
D. m ≥ - 1 .
Tìm tất cả các giá trị thực của tham số m sao cho mọi nghiệm của bất phương trình: x2-3x+2 ≤ 0 cũng là nghiệm của bất phương trình mx2+(m+1) x+m+1 ≥ 0
A. m ≤ - 1
B. m ≤ - 4 7
C. m ≥ - 4 7
D. m ≥ - 1
Tìm tất cả các giá trị thực của tham số m sao cho mọi nghiệm của bất phương trình: x2- 3x+ 2≤ 0 cũng là nghiệm của bất phương trình mx2+ (m+ 1) x+ m+1≥0?
A. m< -1
B. m ≤ - 4 7 .
C. m ≥ - 4 7 .
D. m> -1
Tổng các nghiệm nguyên của bất phương trình: \(2\log_2\sqrt{x+1}\le2-\log_2\left(x-2\right)\) bằng
Cho hàm số f(x) = log2x và g(x) = log2(4-x) . Tìm tập nghiệm của bất phương trình f(x + 1) < g(x + 2)
A. S = - ∞ ; 1 2
B. S = - 1 ; 1 2
C. S = (0; 2).
D. S = - ∞ ; 2
Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0
với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x ∈ ( - ∞ , 0 )
A. m > 2 + 2 3 3
B. m > 2 - 2 3 3
C. m ≥ 2 - 2 3 3
D. m ≥ - 2 - 2 3 3
Tìm tập nghiệm của bất phương trình: 2 2 x 8 > 1
A. x > 3/2 B. x < 3/2
C. x > 2/3 D. x < 2/3