Ôn tập cuối năm môn Đại số

JP

Tìm số hạng không chứ \(x\) trong khai triển \(\left(2x^2-\dfrac{1}{x^2}\right)^4\) \(\left(x\ne0\right)\)

H24
6 tháng 5 2023 lúc 19:53

\(\left(2x^2-\dfrac{1}{x^2}\right)^4=C^k_4\left(2x^2\right)^{4-k}\left(-\dfrac{1}{x^2}\right)^k\)

\(=C^k_4.2^{4-k}.x^{8-2k-2k}.\left(-1\right)^k\)

\(=C^k_4.2^{4-k}.x^{8-4k}.\left(-1\right)^k\)

\(ycbt\Leftrightarrow8-4k=0\Leftrightarrow k=2\)

\(\Rightarrow C^2_4.2^{4-2}.\left(-1\right)^2=24\)

Vậy số hạng không chứa \(x\) trong khai triển là \(24\).

Bình luận (0)

Các câu hỏi tương tự
JP
Xem chi tiết
JP
Xem chi tiết
KD
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết