\(M=\sum\limits^8_{k=0}C_8^kx^{3k}\left(1-x^5\right)^k=\sum\limits^8_{k=0}C_8^kx^{3k}\sum\limits^k_{i=0}\left(-1\right)^i.x^{5i}=\sum\limits^8_{k=0}\left(\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^i.x^{3k+5i}\right)\)
Do \(\left\{{}\begin{matrix}0\le i\le k\le8\\3k+5i=8\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}i=1\\k=1\end{matrix}\right.\)
\(\Rightarrow\) Số hạng chứa \(x^8\) là: \(C_{10}^1.C_1^1.\left(-1\right)^1.x^8=-10x^8\)