NA

Tìm số dư trong phép chia của biểu thức (x+2)(x+4)(x+6)(x+8)+2015 cho đa thức x2+10x+21

DT
9 tháng 12 2018 lúc 21:39

đặt A=\(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+2015\)

        =\(\left(x^2+10x+16\right)\left(x^2+10x+24\right)+2015\)

         =\(\left(x^2+10x+21-5\right)\left(x^2+10x+21+3\right)+2015\)

         =\(\left(x^2+10x+21\right)^2-5\left(x^2+10x+21\right)+3\left(x^2+10x+21\right)-15+2015\)

         =\(\left(x^2+10x+21\right)^2-2\left(x^2+10x+21\right)+2000\)

vì \(\left(x^2+10x+21\right)^2⋮x^2+10x+21\);\(-2\left(x^2+10x+21\right)⋮x^2+10x+21\)

SUY RA        A\(:x^2+10x+21,\forall x\inℝ\)dư 2000

                                        đáp số 2000

                                                                               kb với mk nha!!!!

Bình luận (0)

Các câu hỏi tương tự
HL
Xem chi tiết
TM
Xem chi tiết
TT
Xem chi tiết
VP
Xem chi tiết
NA
Xem chi tiết
NN
Xem chi tiết
Xem chi tiết
PD
Xem chi tiết
BA
Xem chi tiết