TN

Tìm số dư khi chia A cho 7,biết rằng:A=1+2+2^2+...+2^2001+2^2002

H24
20 tháng 9 2015 lúc 14:59

Đặt tổng là A = 1 + 2 + 2^2 + 2^3 + ... + 2^2002 = 1 + 2 + B 
Kể từ số hạng 2^2 đến 2^2002 có 2001 số hạng mà nhóm ba số hạng liên tiếp ta được một số chia hết cho 7 
Do đó B = 2^2 + 2^3 + 2^4 + ... + 2^2000 + 2^2001 + 2^2002 
= 2^2 (1 + 2 + 2^2) + ... + 2^2000 (1 + 2 + 2^2) 
= 2^2. 7 + 2^5 . 7 + ... + 2^2000. 7 
=> B chia hết cho 7 
Vậy A = 3 + B 
nên A chia 7 dư 3

Bình luận (0)
NV
20 tháng 9 2015 lúc 14:59

thấy: 2^k + 2^(k+1) + 2^(k+2) = (1+2+4).2^k = 7.2^k chia hết cho 7 

lại thấy trong A có 2003 số hạng, ta bỏ ra 2 số hạng đầu, còn lại 2001 số hạng: chia hết cho 3 

A = 1+2 + (2^2+2^3+2^4) + (2^5+2^6+2^7) +..+ (2^2000+2^2001+2^2002) 
A = 3 + 7.2^2 + 7.2^5 +..+ 7.2^2000 
=> A chia 7 dư 3

Bình luận (0)
ND
26 tháng 7 2016 lúc 10:09

A chia 7 dư 3

Bình luận (0)
TH
7 tháng 3 2017 lúc 21:12

Mình đồng ý với ý kiến của bạn Nguyễn Võ Văn

Bình luận (0)

Các câu hỏi tương tự
PK
Xem chi tiết
TL
Xem chi tiết
ND
Xem chi tiết
MH
Xem chi tiết
TH
Xem chi tiết
ES
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
HL
Xem chi tiết