OO

tìm số dư của phép chia : 

x^99 + x^55+ x^11 +x +7 cho x+1 và x^2 +1

H24
18 tháng 9 2016 lúc 8:00

(x^99+x^11)+(x^55+x)+7 =x^11(x^88+1)+x(x^54+1)+7 =x^11(x^22+1) (x^66-x^44+x^22-1) + x(x^54+1)+7 = A+7 mà ta có:

 a^n+1=(a+1)(a^(n-1)-a^(n-2)+.....-1) (với n là lẻ) vậy a^n+1 chia hết cho a+1 với a lsf x^2,n lần lượt là 11 và 27=>A chia hết cho x^2+1 Xét 7(x^2+1) dư b nếu x=0 thì b=0 x=+ -1 thì b=1 x=+ -2 thì b=2 x>2 thì b=7 đó cũng là số dư của A+7 chia cho x^2+1. và là số dư cần tìm

Bình luận (0)
B1
14 tháng 9 2017 lúc 15:40

Tìm số dư của phép chia đa thức,(x^99 + x^55 + x^11 + x + 7) : (x^2 - 1),Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

đúng ko ?

Bình luận (0)
LT
5 tháng 1 2018 lúc 21:12

Gọi đa thức đã cho là A

A = (x^99-x^97) + (x^97-x^95) + (x^95-x^93) +...+(x^57-x^55) + (2x^55-2x^53) + (2x^53-2x^51) +...+ (2x^13-2x^11) + (3x^11-3x^9) + (3x^9 - 3x^7) +...+ (3x^3 - 3x) + 4x + 7 

= x^97(x^2 - 1) + x^95(x^2 - 1) + x^93(x^2 - 1) +...+ x^55(x^2 - 1) + 2x^53(x^2 - 1) + 2x^51(x^2 - 1) +...+ 2x^11(x^2 - 1) + 3x^9(x^2 - 1) + 3x^7(x^2 - 1) +...+ 3x(x^2 - 1) + 4x + 7

Ta dễ thấy rằng tất cả các hạng tử (trừ 2 hạng tử cuối cùng) đều chia hết cho x^2 - 1

Vậy đa thức dư trong phép chia  là 4x + 7.

Bình luận (0)

Các câu hỏi tương tự
MT
Xem chi tiết
MA
Xem chi tiết
TY
Xem chi tiết
TS
Xem chi tiết
NS
Xem chi tiết
H24
Xem chi tiết
HM
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết