gọi \(S=1+2+2^2+2^3+...+2^{2015}\Rightarrow2S=2+2^2+2^3+2^4+...+2^{2016}\)
\(\Rightarrow2S-S=S=2+2^2+2^3+2^4+...+2^{2016}-1-2-2^2-2^3-...-2^{2015}\)
\(=\left(2-2\right)+\left(2^2-2^2\right)+\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+2^{2016}-1=2^{2016}-1\)
\(2^{2016}-1⋮2^{2016}-1\Rightarrow2^{2016}-1+1=2^{2016}:2^{2016}-1\)dư 1
\(\Rightarrow2^{2016}+2^{2016}+2^{2016}+2^{2016}\)dư 1+1+1+1=4\(\Rightarrow4\cdot2^{2016}=2^2\cdot2^{2016}=2^{2018}:2^{2016}-1\)dư 4
\(\Rightarrow2^{2018}:S\)dư 4
cái dòng 5 là \(2^{2016}+2^{2016}+2^{2016}+2^{2016}:2^{2016}-1\)dư 1+1+1+1=4 nhé tui viết thiếu
Ta có \(2A=2\left(1+2+2^2+.....+2^{2015}\right)\)\(\)
\(=2+2^2+2^3+2^4+....+2^{2016}\)
=> 2A-A=\(\left(2+2^2+2^3+.....+2^{2016}\right)-\left(1+2++2^2+2^3+....+2^{2015}\right)\)
=> A=\(2^{2016}-1\)
=>\(2^{2018}\)chia \(2^{2016}-1\)dư1
Vậy mới đúng này
A=1+2+22+2^3+...+2^2015.
=>2A=2+2^2+2^3+2^4+...+2^2016.
2A-A=(2+2^2+2^3+2^4+...+2^2016)-(1+2+2^2+2^3+...+2^2015).
=>A=2^2016-1
=>A+1=2^2016
=>2^2018/A+1=2^2018/2^2016=>chia hết
Vậy cần cộng 1 vào A để chia hết nên phép chia 2^2018 cho 1+2+2^2+2^3+...+2^2015 thiếu 1 để chia hết hay có thể nói là dư -1
(vì -(-1) là 1)