Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

H24

Tìm số chính phương có 4 chữ số biết rằng số gồm 2 chữ số đầu lớn hơn số gồm 2 chữ số sau 1 đơn vị

NC
22 tháng 1 2021 lúc 21:24

gọi abcd là là số cần tìm .
đặt abcd=n^2=>1000a+100b+10c+d=n^2 (1)

theo đề bài ta có : ab-cd=1=>10a+b-10c-d=1 (2)
cộng (1) và (2) theo vế ta được:
1010a+101b=n^2+1
=>101(10a+b)=n^2+1
=>n^2+1 chia hết 101=>n^2-100+101 chia hết 101 => n^2-10 chia hết 101 =>(n+10)(n-10) chia hết cho 101 vì n-10 <101 ( loại ) =>n+10 chia hết 101
vì n^2 có 4 chữ số nên 32<n<100=>n=91
vậy số cần tìm là 91^2=8281.

cs j thì k nhá

Bình luận (0)
 Khách vãng lai đã xóa
YN
22 tháng 1 2021 lúc 21:55

Gọi số có bốn chữ số là : abcd ( 1024 \(\le\)abcd < 1000 )

Do abcd là số chính phương => abcd = \(k^2\left(k\in N\right)\)

Theo đề bài , ta có : 

\(ab-cd=1\)

\(\Rightarrow100.\left(ab-cd\right)=100\)

\(\Rightarrow100ab-100cd=100\)

\(\Rightarrow100ab-100=100cd\)

\(\Rightarrow100ab+cd-100=101cd\)( Cộng hai vế với cd )

Mà \(abcd=100ab+cd=k^2\)

\(\Rightarrow k^2-100=101cd\)

\(\Rightarrow\left(k-10\right).\left(k+10\right)=101cd\)(1)

\(\Rightarrow k-10⋮10\)hoặc \(k+10⋮10\)

Do \(1024\le abcd< 1000\)

\(\Rightarrow32^2\le k^2< 100^2\)

\(\Rightarrow32\le k< 100\Rightarrow\left(k-10,101\right)=1\) (2)

Từ (1) và (2) \(\Rightarrow k+10⋮101\)(*)

Ta có : \(32\le k< 100\)

\(\Rightarrow42\le k+10< 110\)(**)

Từ (*) và (**) \(\Rightarrow k+10=101\)

\(\Rightarrow k=101-10=91\)

\(\Rightarrow k^2=91^2=8281=abcd\)

Vậy abcd = 8281

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NH
Xem chi tiết
NV
Xem chi tiết
FC
Xem chi tiết
TT
Xem chi tiết
TD
Xem chi tiết
DN
Xem chi tiết
DH
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết