LH

Tìm số chính phương có 4 chữ số biết rằng 2 chữ số đầu giống nhau , 2 chữ số cuối giống nhau

LT
4 tháng 11 2015 lúc 18:48

Cách 1 : Gọi số chính phương phải tìm là . n\(^2\)= aabb gạch ngang trên đầu (a,b \(\in N\)\(\le a\le9,0\le b\le9\) )

Ta có  \(n^2\)= aabb gạch ngang trên đầu = 1100a + 11b = 11.(100a + b) = 11 .(99a + a + b)  (1).

Do đó 99a + a + b chia hết cho 11 nên a + b chia hết cho 11, vậy a + b = 11

Thay a +b = 11 vào (1) được \(n^2\)= 11.(99a + 11) = 11\(^2\)= (9a + 1). Do đó 9a + 1 phải là số chính phương.

Thử với a = 1,2,3,4,5,6,7,8,9 chỉ có a = 7 cho 9a + 1 = 8\(^2\) là số chính phương.

Vậy a = 7
( còn lại pạn tự làm )
Cách 2
Giả sử aabb = n\(^2\)
\(\Leftrightarrow\)a.10\(^3\) + a.10\(^2\)+ b.10 + b = n\(^2\)
\(\Leftrightarrow\)11(100a + b) = n\(^2\)
\(\Rightarrow\)n\(^2\) chia hết cho 11
\(\Rightarrow\)n chia hết cho 11
Do n\(^2\)có 4 chữ số nên 32 < n < 100
\(\Rightarrow\)n = 33,n = 44,n = 55,...n = 99
Thử vào thì n = 88 là thỏa mãn
Vậy số đó là 7744

Bình luận (0)
TH
4 tháng 11 2015 lúc 18:25

Bạn vào câu hỏi tương tự nha !!!

Bình luận (0)
DK
4 tháng 11 2015 lúc 18:26

Sorry bạn.Mình không biết làm.

Bạn vào câu hỏi tương tự đó

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
NH
Xem chi tiết
DH
Xem chi tiết
RS
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết