Từ phép tính abcd + abc + ab + a = 5313 ta di chuyển các chữ số sẽ được.
aaaa + bbb + cc + a = 5315
a a a a
+ b b b
c c
d
5 3 1 5
Từ phép tính trên cho ta thấy a=4 (không thể bằng 5 (5555 > 5315) ; không thể bằng 3 vì hàng trăm không thể có số nhớ là 2).
Ta được bbb+cc+d = 5315 – 4444 = 871
Hay
b b b
+ c c
d
8 7 1
Tương tự ta có b = 7, ta được cc + d = 871 – 777 = 94
c c
+ d
9 4
Tương tự ta có c = 8 và d = 6
Số abcd = 4786
số abcd=4786 bài này mk từng học 1 lần
Từ phép tính abcd + abc + ab + a = 5315 ta di chuyển các chữ số sẽ được.
aaaa + bbb + cc + a = 5315
aaaa
+ bbb
cc
d
5315
Từ phép tính trên cho ta thấy a < 5 (không thể bằng 5 (5555 > 5315) ; không thể bằng 3 vì hàng trăm không thể có số nhớ là 2) => a= 4
Ta được bbb + cc + d = 5315 – 4444 = 871
Hay
bbb
+ cc
d
871
Tương tự ta có b = 7, ta được cc + d = 871 – 777 = 94
cc
+ d
94
Tương tự ta có c = 8 và d = 6
Số abcd = 4786
Ký hiệu (abcd) là số tự nhiên có 4 chữ số.
(abcd) + (abc) + (ab) + (a) = 1111.a + 111.b + 11.c + d
Vậy 1111.a + 111.b + 11.c + d = 4321
+ Nếu a < 3 => 111.b + 11.c + d > 2098 (vô lý vì b, c, d < 10)
+ Nếu a > 3 => vế trái > 4321
Vậy a = 3 => 111.b + 11.c + d = 988
+ Nếu b < 8 => 11.c + d > 210 (vô lý vì c, d < 10)
+ Nếu b > 8 => vế trái > 988
Vậy b = 8 => 11.c + d = 100
+ Nếu c < 9 => d > 11 (vô lý)
Vậy c = 9; d = 1
=> (abcd) = 3891
Từ phép tính abcd + abc + ab + a = 5313 ta di chuyển các chữ số sẽ được.
aaaa + bbb + cc + a = 5315
a a a a
+ b b b
c c
d
5 3 1 5
Từ phép tính trên cho ta thấy a=4 (không thể bằng 5 (5555 > 5315) ; không thể bằng 3 vì hàng trăm không thể có số nhớ là 2).
Ta được bbb+cc+d = 5315 – 4444 = 871
Hay
b b b
+ c c
d
8 7 1
Tương tự ta có b = 7, ta được cc + d = 871 – 777 = 94
c c
+ d
9 4
Tương tự ta có c = 8 và d = 6
Số abcd = 4786