\(\Leftrightarrow\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1\)
\(\Leftrightarrow x+y+3=x+y+1+2\sqrt{xy}-2\sqrt{x}-2\sqrt{y}\)
\(\Leftrightarrow\sqrt{y}+1=\sqrt{x}\left(\sqrt{y}-1\right)\)
- Với \(y=1\) ko phải là nghiệm
- Với \(y>1\) , do vai trò của x và y hoàn toàn như nhau, ko mất tính tổng quát, giả sử \(x\le y\)
+ Với \(x=\left\{1;2;3\right\}\) ko thỏa mãn
+ Với \(x\ge4\Rightarrow\sqrt{y}+1=\sqrt{x}\left(\sqrt{y}-1\right)\ge2\left(\sqrt{y}-1\right)\)
\(\Leftrightarrow\sqrt{y}\le3\Rightarrow y\le9\Rightarrow4\le y\le9\)
Lần lượt thử \(y\) từ 4 đến 9 ta được các cặp nghiệm của pt là \(\left(x;y\right)=\left(4;9\right);\left(9;4\right)\)