Ta có
∫ f x d x = ∫ x 2 + 1 - x 2 x 2 + x + 1 d x = ∫ x 2 - x + 1 d x = x 3 3 - x 2 2 + x + C
Đáp án A
Ta có
∫ f x d x = ∫ x 2 + 1 - x 2 x 2 + x + 1 d x = ∫ x 2 - x + 1 d x = x 3 3 - x 2 2 + x + C
Đáp án A
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = - 2017 ( x - 1 ) ( x + 2 ) 3 ( x - 3 ) 2 Tìm số điểm cực trị của f(x)
A. 3
B. 2
C. 0
D. 1
Cho hàm số f(x) có đạo hàm f ’ ( x ) = ( x + 1 ) 2 ( x + 2 ) 3 ( 2 x - 3 ) . Tìm số điểm cực trị của f(x).
A. 3
B. 2
C. 0
D. 1
Cho F(x) là một nguyên hàm của hàm số f x = 1 + x − 1 − x trên tập và thỏa mãn F 1 = 3 ; F - 1 = 2 ; F - 2 = 4 ; Tính tổng T = F 0 + F 2 + F − 3 .
A. 8
B. 12
C. 14
D. 10
Cho hàm số f(x) có f ( x ) = ( x + 1 ) 4 ( x - 2 ) 3 ( 2 x + 3 ) 7 ( x - 1 ) 10 . Tìm cực trị f(x)
A. 3
B. 2
C. 1
D. 4
Cho hàm số y = f(x) xác định trên ℝ và có đồ thị của hàm số f ' ( x ) , biết f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) và các khẳng định sau:
Hàm số y = f(x) có 2 điểm cực trị.
Hàm số y = f(x) đồng biến trên khoảng ( - ∞ ; 0 ) .
Max [ 0 ; 3 ] f ( x ) = f ( 3 ) .
Min ℝ f ( x ) = f ( 2 ) .
Max [ - ∞ ; 2 ] f ( x ) = f ( 0 ) .
Số khẳng định đúng là
A. 2.
B. 3.
C. 4.
C. 4.
Cho F(x) là một nguyên hàm của hàm số f(x) trên đoạn [1;3], F(1)=3,F(3)=5 và ∫ 1 3 ( x 4 - 8 x ) f ( x ) dx = 12 . Tính I = ∫ 1 3 ( x 3 - 2 ) F ( x ) dx .
A. I= 147 2
B. I= 147 3
C. I= - 147 2
D. I= 147.
Biết F(x) là một nguyên hàm của hàm số f(x)= e 2 x và F(0)=3/2. Tính F(1/2)
A. F(1/2)=1/2 e+2
B. F(1/2)=1/2 e+1
C. F(1/2)=1/2 e+1/2
D. F(1/2)=2e+1
Cho hàm số f(x) có đạo hàm f ’ ( x ) = x 2019 ( x - 1 ) 2 ( x + 1 ) 3 . Số điểm cực đại của hàm số f(x) là
A. 1
B. -1
C. 0
D. 3
Cho hàm số y=f(x) có đạo hàm f'(x)= x ( x - 1 ) 2 ( x 2 + m x + 9 ) . Có bao nhiêu số nguyên dương m để hàm số y=f(3-x) đồng biến trên khoảng ( 3 ; + ∞ ) .
A. 6.
B. 8.
C. 5.
D. 7.
Cho hàm số f(x) có đạo hàm f ' ( x ) = x 2 . ( x - 1 ) 3 . ( x - 2 ) 4 . ( x - 3 ) 5 ; ∀ x ∈ R . Số điểm cực trị của hàm số đã cho là:
A. 1
B. 4
C. 2
D. 3