Chọn D
Tách làm hai nguyên hàm, nguyên hàm ∫ 2 x e x d x được tính bằng cách sử dụng nguyên hàm từng phần.
Chọn D
Tách làm hai nguyên hàm, nguyên hàm ∫ 2 x e x d x được tính bằng cách sử dụng nguyên hàm từng phần.
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Biết F ( x ) = ( a x 2 + b x + c ) e - x là một nguyên hàm của hàm số f ( x ) = ( 2 x 2 - 5 x + 2 ) e - x trên ℝ . Giá trị của biểu thức f(F(0)) bằng:
Biết F ( x ) = ( a x 2 + b x + c ) e - x là một nguyên hàm của hàm số f ( x ) = ( 2 x 2 - 5 x + 2 ) e - x trên ℝ . Giá trị của biểu thức f(F(0)) bằng
A. 9e
B. - 1 e
C. 3e
D. 20 e 2
Câu 1. Đường thẳng nào cho dưới đây là tiệm cận ngang của đồ thị hàm số
A. y = -2
B. y = -1
C. x = 2
D. y = 2
Câu 2. Cho hàm số f(x) = x2lnx. Tính f'(e)
A. 3e
B. 2e
C. e
D. 2 + e
Câu 3. Viết công thức tính V của khối cầu có bán kính r.
Câu 4. Thể tích khối chóp tứ giác đều có tất cả các cạnh bằng 6 gần bằng số nào sau đây nhất?
A. 48
B. 46
C. 52
D. 51
Câu 5. Tìm tập xác định D của hàm số y = ln(x2 - 3x)
A. D = (0;3)
B. D = [0;3]
C. D = (-∞;0)∪(3;+∞)
D. D = (-∞;0)∪[3;+∞)
Cho hai hàm số F ( x ) = ( x 2 + a x + b ) e - x và f ( x ) = ( - x 2 + 3 x + 6 ) e - x . Tìm a và b để F(x) là một nguyên hàm của hàm số f(x)
A. a = 1 b = -7
B. a = -1 b = -7
C. a = -1 b = 7
D. a = 1 b = 7
Cho hàm số y= f(x) xác định và liên tục trên [ a; e] và có đồ thị hàm số y= f’ (x) như hình vẽ bên. Biết rằng f(a) + f( c)) = f( b) + f( d) . Tìm giá trị lớn nhất và nhỏ nhất của hàm số y= f( x) trên [ a; e]?
A. m a x [ a , e ] f ( x ) = f ( c ) m i n [ a , e ] f ( x ) = f ( a )
B. m a x [ a , e ] f ( x ) = f ( a ) m i n [ a , e ] f ( x ) = f ( b )
C. m a x [ a , e ] f ( x ) = f ( e ) m i n [ a , e ] f ( x ) = f ( b )
D. m a x [ a , e ] f ( x ) = f ( d ) m i n [ a , e ] f ( x ) = f ( b )
Giả sử hàm số f(x) = (ax2 + bx + c).e–x là một nguyên hàm của hàm số g(x) = x(1 – x).e–x. Giá trị của biểu thức A = a + 2b + 3c bằng
A. 6
B. 4
C. 9
D. 3
Nguyên hàm của hàm số f ( x ) = e x + e - x là:
Cho hai hàm số f x = ax 4 + bx 3 + cx 2 + dx + e và g x = mx 3 + nx 2 + px + 1 với a, b, c, d, e, m, n, plà các số thực. Đồ thị của hai hàm số y = f'(x), y = g'(x) như hình vẽ bên. Tổng các nghiệm của phương trình f(x) + q= g(x) + e bằng
A. .
B. .
C. .
D. .
Tìm nguyên hàm của hàm số \(f\left(x\right)=e^{x^2}\)