1. Tìm a,b ∈ Z+(a,b ≠1) để 2a+3b là số chính phương
2. Tìm nghiệm nguyên không âm của phương trình:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\)
3. Tìm x,y,z ∈ Z+ t/m:
\(xy+y-x!=1;yz+z-y!=1;x^2-2y^2+2x-4y=2\)
4. Tìm tất cả các số nguyên tố p;q;r sao cho:
pq+qp=r
5. Tìm nghiệm nguyên tố của phương trình:
\(x^y+y^x+2022=z\)
6. CMR: Với n ∈ N và n>2 thì 2n-1 và 2n+1 không thể đồng thời là 2 số chính phương
tìm nghiệm nguyên của phương trình sau :
a, x^3+y^3+z^3=1012
b, 7^z=2^x +3^y -1
c, 2^x * 3^y=1+5^z
tìm n nguyên dương để phương trình sau có nghiệm x,y,z nguyên dương:(x+y+z)^2=nxyz
B1 : Giai pt nghiệm nguyên :
a, y^3=x^3+2x^2+1 và xy=z^2+2
b, x^3-y^3-z^3=3xyz và x^2 = 2.(y+z) ( x,y,z nguyên dương )
c,x^3+y^3=3xy+3
d,x^4-x^2+2x+2=y^2
B2:a, Tìm các số nguyên dương tm : \(\frac{x-y.\sqrt{2011}}{y-z.\sqrt{2011}}\)là số hữu tỉ và x^2+y^2+z^2 là các sô nguyên tố
b, Tìm các số tự nhiên x,y : 2^x + 57 = y^2
Ai làm nhanh và đúng nhất mk sẽ cho 3 tick
Hạn ngày 17/11/2017
CMR pt sau vô nghiệm với x,y,z nguyên dương và z>1 : (x+1)2+(x+2)2+...+(x+99)2=yz
phân tích thành nhân tử
\(A=x^3+y^3+z^3-3xyz\)
từ đó tìm nghiệm nguyên (x, y, z) của phương trình
\(x^3+y^3+z^3-3xyz=x\left(y-z\right)^2+z\left(x-y\right)^2+y\left(z-x\right)^2\)
thỏa mãn điều kiện
\(max\left(x,y,z\right)< x+y+z-max\left(x,y,z\right)\)
Tìm nghiệm nguyên của hệ phương trình:
a) \(\hept{\begin{cases}z^2-y^3=11\\z^2=2y^2+1\end{cases}}\) b) x+y+z=6 ; xy+yz-xz=7 và x^2+y^2+z^3=14
Tìm x,y thỏa mãn: \(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
Tìm nghiệm nguyên: \(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
Tìm x,y,z nguyên dương thỏa mãn: \(\frac{x-y\sqrt{2020}}{y-z\sqrt{2020}}\) là số hữu tỉ và \(x^2+y^2+z^2\) là số nguyên tố
1,,giải pt nghiệm nguyên dương sau với x ,y đôi 1 khác nhau : x^3+y^3+z^3=(x+y+z)^2