Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NT

tìm nghiệm nguyên x,y của pt:  \(x^2+xy+y^2=x^2y^2\)

VT
22 tháng 9 2017 lúc 22:38

Thêm xy vào 2 vế:

 \(x^2+2xy+y^2=x^2y^2+xy\)(1)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

Ta thấy xy và xy+1 là 2 số nguyên liên tiếp, có tích là 1 số chính phương nên tồn tại 1 số bằng 0

xét xy=0, từ (1)=> \(x^2+y^2=0\Rightarrow x=y=0\)

xét xy+1=0=> xy=-1, => \(\left(x;y\right)=\orbr{\begin{cases}\left(1;-1\right)\\\left(-1;1\right)\end{cases}}\)

vậy nghiệm nguyên (x;y) của PT là: (0;0); (1;-1); (-1;1)

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết
KG
Xem chi tiết
TZ
Xem chi tiết
NQ
Xem chi tiết
NT
Xem chi tiết
KA
Xem chi tiết
PP
Xem chi tiết