Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Giải phương trình nghiệm nguyên
a) \(x^2+4x+2018^{10}\)
b) \(x^2+4x+\left(y-1\right)^2=21\)
c) \(x^2+3\left(y-1\right)^2=2021\)
d) \(\left(3x-1\right)^{2020}-18\left(y-2\right)^{2019}=2019^{2020}\)
2. Tìm x,y ∈ Z
a) \(x^2-y^2+6y=56\)
b) \(x^2-4x+9y^2-6y=11\)
\(x^4+4x^2y+3y^2+6y-16=0\)
tìm nghiệm nguyên x;y
Tìm x,y để các phương trình sau nghiệm nguyên:
a, x^2 + y^2 - 2x - 6y + 10 = 0
b, 4x^2 + y^2 + 4x - 6y - 24 = 0
c ,x^2 + y^2 - x - y - 8 = 0
Cho 2x^2 +5y^2+4xy-6y+3=0.Hãy tính B=2021*(x+y)^4+2022*(x+2)^6
tìm nghiệm nguyên của phương trình
(x^2-10*x+29)(y^2+6y+14)=20
cho x và y thỏa mãn điều kiện x^2-2xy+6y^2-12x+2y+41=0.tính giá trị của P=2021.(10-x-2y)^2021-8(6y-x)^2022
2^x + (x^2 + 1). (y^2 - 6y + 8) =0
Tìm nghiệm nguyên của pt:
a) x2 + x + 6 = y2
b) 3/2 x^2 - 6y^2 = x + 332
Tìm nghiệm nguyên của phương trình : \(y^2-5y+62=\left(y-2\right)x^2+\left(y^2-6y+8\right)x\)