x, y nguyên dương
=> x, y >0
Ta có: y : 4 dư 0; 1; 2; 3 => \(y^2\): 4 dư 0; 1
Vì 32\(⋮\)4
=> \(3^x\): 4 dư 0 hoặc 1
Mà x >0 => \(3^x\): 4 dư 1 (1)
Với x là số lẻ => x = 2k + 1
=> \(3^{2k+1}=3^{2k}.3\):4 dư 3 loại vì (1)
=> x là số chẵn => x = 2k (k nguyên dương )
Khi đó: \(3^{2k}-32=y^2\)
<=> \(\left(3^k-y\right)\left(3^k+y\right)=32\)
Vì x, y nguyên dương => \(3^k+y>3^k-y>1\)
Có thể xảy ra 2 TH
TH1: \(\hept{\begin{cases}3^k+y=16\\3^k-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}3^k=9\\y=7\end{cases}\Leftrightarrow\hept{\begin{cases}k=2\\y=7\end{cases}}}\)=> x = 4; y = 7 thử lại thỏa mãn
TH2: \(\hept{\begin{cases}3^k+y=8\\3^k-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}3^k=6\\y=2\end{cases}}\)loại
Vậy x = 4 ; y= 7