PV

Tìm nghiệm nguyên dương của phương trình x+y+z = xyz

H24
12 tháng 3 2017 lúc 18:24

X00+Y10+Z=XYZ

Bình luận (0)
H24
12 tháng 3 2017 lúc 18:25

X00+Y0+Z=XYZ

Bình luận (0)
TT
23 tháng 1 2021 lúc 21:01

Vì x,y,z nguyên dương

Ta giả sử 1<x<y<z

Từ x+y+z=xyz =>x+y+z/xyz=xyz/xyz

=>x/xyz=y/xyz=z/xyz

=>1/yz=1/xz=1/xy=1

Ta có : 1/yz+1/xz+1/yz<1/^2+1/x^2+1/x^2=3/x^2

=>1<3/^2=>x^2<3

Mà x dương => x=1

Thay vào x,y,z ta đc

1+y+z=1yz

yz-(1=y+z)=0

=> (yz-y)-(z-1)-2=0

=>y(z-1)-(z-1)=2

(z-1)*(y-1)=2       (1)

Theo giả sử 1<y<z => z-1>0 và y-1>0

Từ (1) ta có

TH1:

z-1=1=>z=2

y-1=2=>y=3

TH2:

z-1=2=>z=3

y-1=1=>y=2

Vậy có hai cặp nghiệm nguyê thỏa mãn (x,y,z)=(1,2,3);(1,3,2)

Tương tự bạn xét tiếp các trườn hợp như 1<y<z<x và 1<z<y<x

Bình luận (1)

Các câu hỏi tương tự
NH
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
NC
Xem chi tiết
DT
Xem chi tiết
TT
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết