x3 - y3 = 91
<=>(x-y)(x2+xy+y2)=91
Do x-y < x2+xy+y2 và x2+xy+y2>0 nên ta có 2 trường hợp:
Th1: \(\hept{\begin{cases}x-y=1\\x^2+xy+y^2=91\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1+y\\\left(1+y\right)^2+\left(1+y\right).y+y^2=91\end{cases}}\)
=>1+2y+y2+y+y2+y2=91
<=>3y2+3y-90=0
<=>y1=5;y2=-6 (nhận 2 nghiệm)
Với y=5 => x=6 (nhận)
Với y=-6 =>x=-5 (nhận)
Th2: \(\hept{\begin{cases}x-y=7\\x^2+xy+y^2=13\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7+y\\\left(7+y\right)^2+\left(7+y\right).y+y^2=13\end{cases}}\)
=>49+14y+y2+7y+y2+y2=13
<=>3y2+21y+36=0
<=>y3=-3;y4=-4 (nhận 2 nghiệm )
Với y=-3 =>x=4
Với y=-4 =>x=3
Vậy (x;y)= (6;5) ;(-5;-6);(4;-3);(3;-4)
sửa xíu giúp mik là do x-y < hoặc = x2+xy+y2 .........