\(x^3+x^2+x+1=2003^y\)y
\(\left(x^3+x^2\right)+\left(x+1\right)=2003^y\)
\(x^2\left(x+1\right)+\left(x+1\right)=2003^y\)
\(\left(x^2+1\right)\left(x+1\right)=2003^y\)
\(\left(x+1\right)^2\left(x-1\right)=2003^y\)
\(x^4=2003^y\)
Bạn có thể giải thích cho mình sao (x2 + 1)(x+1) <=> (x+1)(x-1) <=> x4