KA

Tìm nghiệm nguyên của PT: \(x^2y^2-xy=x^2=2y^2\)

 

TH
6 tháng 1 2018 lúc 15:49

Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm 

Bình luận (0)
KA
6 tháng 1 2018 lúc 20:32

sorry @Thắng Hoàng mình nhầm đề, phải là

\(x^2y^2-xy=x^2+2y^2\)

Bình luận (0)

Các câu hỏi tương tự
KS
Xem chi tiết
NT
Xem chi tiết
NK
Xem chi tiết
DH
Xem chi tiết
TZ
Xem chi tiết
KG
Xem chi tiết
KS
Xem chi tiết
NT
Xem chi tiết
ND
Xem chi tiết