CP

Tìm nghiệm nguyên của phương trình:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

HT
5 tháng 12 2018 lúc 21:39

bài này làm thế này: 

Do vai trò của x,y,z là như nhau nen giả sử z ≥ y ≥ x ≥ 1 

Ta sẽ thử trực tiếp một vài trường hợp: 

- Nếu x = 1 thì 1/y + 1/z = 0 ( vô nghiệm) 

-Nếu x = 2 thì 1/y + 1/z = 1/2 <=> 2y + 2z = yz <=> (y - 2)(z - 2) = 4 

Mà :0 ≤ y - 2 ≤ z - 2 và (y- 2), (z - 2) phải là ước của 4 

Do đó ta có các trường hợp: 

{ y - 2 = 1```````{ y = 3 
{ z - 2 = 4 <=>{ z = 6 

{ y- 2 = 2````````{ y = 4 
{ z - 2 = 2 <=>{ z = 4 

- Nếu x = 3 thì 1/y + 1/z = 2/3 

+ Nếu y = 3 thì z = 3 

+ Nều y ≥ 4 thì 1/y + 1/z ≤ 1/4 + 1/4 = 1/2 < 1/3 

=> phương trình vô nghiệm 

♥ Nếu x = 4 thì 1/x + 1/y + 1/z ≤ 1/4 + 1/4 + 1/4 = 3/4 < 1 

=>pt vô nghiệm 

Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)

Bình luận (0)

Các câu hỏi tương tự
XO
Xem chi tiết
KG
Xem chi tiết
CP
Xem chi tiết
H24
Xem chi tiết
MA
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
MB
Xem chi tiết