ND

Tìm nghiệm nguyên của phương trình: \(x^6+3x^2+1=y^4\)

NN
2 tháng 4 2017 lúc 12:55

Ta có:

\(x^6+3x^2+1=y^4\)

\(\Leftrightarrow4x^6+12x^3+4=4y^4\)

\(\Leftrightarrow4x^6+12x^3+9=4y^4+5\)

\(\Leftrightarrow\left(2x^3+3\right)^2-4y^4=5\)

\(\Leftrightarrow\left(2x^3+2y^2+3\right)\left(2x^3-2y^2+3\right)=5\)

\(\Rightarrow\orbr{\begin{cases}2x^3+2y^2+3=5\\2x^3-2y^2+3=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=0;y=-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x^3+2y^2+3=-1\\2x^3-2y^2+3=-5\end{cases}\Leftrightarrow x=\sqrt[3]{-6}}\) (loại)

Vậy PT có nghiệm \(\left(x;y\right)=\left(0;1\right);\left(0;-1\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
BC
Xem chi tiết
TV
Xem chi tiết
DT
Xem chi tiết
FK
Xem chi tiết
NH
Xem chi tiết
VH
Xem chi tiết
NQ
Xem chi tiết
NH
Xem chi tiết