LK

Tìm nghiệm nguyên của phương trình: x2 + 4y2 - 2xy = 13 Ai giúp mình với ạ

AH
29 tháng 1 2023 lúc 0:09

Lời giải:

$x^2+4y^2-2xy=13$
$\Leftrightarrow (x^2+y^2-2xy)+3y^2=13$

$\Leftrightarrow (x-y)^2+3y^2=13$

$\Rightarrow 3y^2=13-(x-y)^2\leq 13< 15$

$\Rightarrow y^2< 5$

Vì $y^2\geq 0$ với mọi $y$ nguyên nên $y^2\in\left\{0; 1;4\right\}$

Với $y^2=0$:

$(x-y)^2=13-3y^2=13$ (loại vì 13 không là scp)

Với $y^2=1$:

$(x-y)^2=13-3y^2=10$ (loại vì 10 không là scp)

Với $y^2=4$:

$(x-y)^2=13-3y^2=1$

$\Rightarrow x-y=\pm 1$

$\Rightarrow x=y\pm 1$

$y^2=4\Rightarrow y=\pm 2$

Với $y=2$ thì $x=1$ hoặc $x=3$

Với $y=-2$ thì $x=-3$ hoặc $y=-1$

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
HN
Xem chi tiết
TH
Xem chi tiết
BK
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
HG
Xem chi tiết
TL
Xem chi tiết
NQ
Xem chi tiết