chắc là nghiệm nguyên dương chứ nhỉ?Mình giải với nghiệm nguyên nhé:
31y<=280-21>>>y<=8 mà 21x chia hết cho 7,280 chia hết cho 7 suy ra 31y chia hết cho 7 suy ra y=(280-31.7)/21>>x=3
Vậy x=3;y=7
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chắc là nghiệm nguyên dương chứ nhỉ?Mình giải với nghiệm nguyên nhé:
31y<=280-21>>>y<=8 mà 21x chia hết cho 7,280 chia hết cho 7 suy ra 31y chia hết cho 7 suy ra y=(280-31.7)/21>>x=3
Vậy x=3;y=7
Tìm nghiệm nguyên dương của các pt sau:
a) 12x + 19y =94
b) 13x +3y =50
c) 21x + 31y =280
d) 4/x + 2/y = 1
tìm nghiệm nguyên dương của phương trình : 40x +31y=1
tìm ngiệm nguyên của phương trình
3x-2y=1
18x-30y=59
7(x-1)+3y=2xy
12x+19y=94
tìm ngiệm nguyên dương của pt
12x+19y=94
13x=3y=50
21x+31y=280
\(\frac{4}{x}+\frac{2}{y}=1\)
tính khoảng cách từ gốc tọa độ O đến đg thẳng 8x+6y=3
Tìm hai nghiệm của phương trình 5 x 2 + 21x − 26 = 0 sau đó phân tích đa thức B = 5 x 2 + 21x − 26 = 0 sau thành nhân tử.
A. x 1 = 1 ; x 2 = 26 5 ; B = ( x − 1 ) x + 26 5
B. x 1 = 1 ; x 2 = - 26 5 ; B = 5 ( x + 1 ) x + 26 5
C. x 1 = 1 ; x 2 = - 26 5 ; B = 5 ( x - 1 ) x + 26 5
D. x 1 = 1 ; x 2 = 26 5 ; B = 5 ( x - 1 ) x + 26 5
Cho phương trình 2\(x^2\)-2mx+\(m^2\)-2=0.
a. Tìm các giá trị của m để phương trình có 2 nghiệm dương phân biệt.
b. Gỉa sử phương trình có 2 nghiệm không âm, tìm nghiệm dương lớn nhất của phương trình.
Cho phương trình 2\(x^2\)-2mx+\(m^2\)-2=0.
a. Tìm các giá trị của m để phương trình có 2 nghiệm dương phân biệt.
b. Gỉa sử phương trình có 2 nghiệm không âm, tìm nghiệm dương lớn nhất của phương trình.
Cho phương trình 2\(x^2\)-2mx+\(m^2\)-2=0.
a. Tìm các giá trị của m để phương trình có 2 nghiệm dương phân biệt.
b. Giả sử phương trình có 2 nghiệm không âm, tìm nghiệm dương lớn nhât của phương trình.
cho phương trình x2 -(m+1)x +m+2=0
a) tìm m để phương trình vô nghiệm ? có nghiệm kép? có nghiệm? có 2 nghiệm phân biệt?
b) tìm m để phương trình có 2 nghiệm trái dấu
c) tìm m để phương trình có 2 nghiệm dương phân biệt
d) tìm m để phương trình có ít nhất một nghiệm dương
3. Viết hệ thức Vi-et đối với các nghiệm của phương trình bậc hai
a x 2 + b x + c = 0 ( a ≠ 0 )
Nêu điều kiện để phương trình a x 2 + b x + c = 0 (a ≠ 0) có một nghiệm bằng 1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình
1954 x 2 + 21 x – 1975 = 0
Nêu điều kiện để phương trình a x 2 + b x + c = 0 ( a ≠ 0 ) có một nghiệm bằng -1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình
2005 x 2 + 104 x – 1901 = 0